Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy
نویسندگان
چکیده
منابع مشابه
Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy
In this paper, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.
متن کاملProtein complexes studied by NMR spectroscopy.
Recent advances in NMR methods now allow protein complexes to be studied in great detail in a wide range of solution conditions. Isotope-enrichment strategies, resonance-assignment approaches and structural-determination methods have evolved to the point where almost any type of complex involving proteins of reasonable size may be studied in a straightforward way. A variety of isotope editing a...
متن کاملFemtosecond absorption spectroscopy of transition metal charge-transfer complexes.
Our research is concerned with the application of femtosecond time-resolved absorption techniques to the study of the photophysics of transition metal complexes. The focus is to understand the events that characterize the process of excited-state evolution from the time a photon is absorbed by a molecule to the formation of the lowest-energy excited state of the system. This Account describes o...
متن کاملDetermination of Trimethoprim Based on Charge-Transfer Complexes Formation
A spectrophotometric study concerning the interaction between Trimethoprim (TMP) ,Sulfamethoxazole (SFMx), as n-donor and 2,3-dichloro-5,6- dicyano-P-benzoquinine (DDQ) and chloranilic acid (CA) as π-acceptor were been performed at 25°C. The results of interaction of CA and DDQwith TMP indicate the formation of a 1:1, 1:2, charge transfer complexes through non equilibrium reactions. In the case...
متن کاملCharge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy.
Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2013
ISSN: 2073-4360
DOI: 10.3390/polym5010269